Nutritional value-dependent and nutritional value-independent effects on Drosophila melanogaster larval behavior.
نویسندگان
چکیده
Gustatory stimuli allow an organism not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. For both mammals and insects, sugars-perceived as "sweet"-potentially predict nutritional benefit. Interestingly, even Drosophila adult flies are attracted to most high-potency sweeteners preferred by humans. However, the gustatory information of a sugar may be misleading as some sugars, although perceived as "sweet," cannot be metabolized. Accordingly, in adult Drosophila, a postingestive system that additionally evaluates the nutritional benefit of an ingested sugar has been shown to exist. By using a set of seven different sugars, which either offer (fructose, sucrose, glucose, maltodextrin, and sorbitol) or lack (xylose and arabinose) nutritional benefit, we show that Drosophila, at the larval stage, can perceive and evaluate sugars based on both nutrition-dependent and -independent qualities. In detail, we find that larval survival and feeding mainly depend on the nutritional value of a particular sugar. In contrast, larval choice behavior and learning are regulated in a more complex way by nutrition value-dependent and nutrition value-independent information. The simplicity of the larval neuronal circuits and their accessibility to genetic manipulation may ultimately allow one to identify the neuronal and molecular basis of the larval sugar perception systems described here behaviorally.
منابع مشابه
Concentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملGene-environment interplay in Drosophila melanogaster: chronic food deprivation in early life affects adult exploratory and fitness traits.
Early life adversity has known impacts on adult health and behavior, yet little is known about the gene-environment interactions (GEIs) that underlie these consequences. We used the fruit fly Drosophila melanogaster to show that chronic early nutritional adversity interacts with rover and sitter allelic variants of foraging (for) to affect adult exploratory behavior, a phenotype that is critica...
متن کاملEffects of parental larval diet on egg size and offspring traits in Drosophila.
If a mother's nutritional status predicts the nutritional environment of the offspring, it would be adaptive for mothers experiencing nutritional stress to prime their offspring for a better tolerance to poor nutrition. We report that in Drosophila melanogaster, parents raised on poor larval food laid 3-6% heavier eggs than parents raised on standard food, despite being 30 per cent smaller. The...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملLarval food quality affects adult (but not larval) immune gene expression independent of effects on general condition.
The potential effect of larval condition on adult immunity in holometabolous insects is rarely considered. We show here that larval food composition can impact adult immunity independent from effects on general condition of the animal. Rather, our data indicate a plastic allocation of resources to immunity in high-protein environments. Specifically, we found that increasing the nutritional yeas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical senses
دوره 37 8 شماره
صفحات -
تاریخ انتشار 2012